Multi-objective non-weighted optimization to explore new efficient design of electrical microgrids

نویسندگان

چکیده

• Development of a decision-support tool for innovative electrical microgrid design. Microgrid design with technological and management parameters. Physical modelling conversion storage technologies sequential simulation. Multi-objective non-weighted optimization NSGA-II genetic algorithm. Variety compromises between economic, technical environmental indicators. Centralized networks induce dependency local territories their power supply. However, thanks to microgrids, can increase decision-making autonomy network that matches values. Technological choices are critical minimize microgrids negative impacts on environment. Influence the latter space is rarely discussed whereas extending would help find microgrids. The purpose this paper several various performances parameters objectives. solutions’ variety therefore extends decision-makers’ space. A has been developed answer goal. Design both physical implemented in simulation operation. performance allows use algorithms perform multi-objective optimizations. Two two-objective optimizations performed. Results show how diversity terms helps user choosing Especially, it underlines potential approach close but different

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

An interactive weighted fuzzy goal programming technique to solve multi-objective reliability optimization problem

This paper presents an application of interactive fuzzy goal programming to the nonlinear multi-objective reliability optimization problem considering system reliability and cost of the system as objective functions. As the decision maker always have an intention to produce highly reliable system with minimum cost, therefore, we introduce the interactive method to design a high productivity sys...

متن کامل

Weighted Preferences in Evolutionary Multi-objective Optimization

Abstract Evolutionary algorithms have been widely used to tackle multiobjective optimization problems. Incorporating preference information into the search of evolutionary algorithms for multi-objective optimization is of great importance as it allows one to focus on interesting regions in the objective space. Zitzler et al. have shown how to use a weight distribution function on the objective ...

متن کامل

New approaches to multi-objective optimization

A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Many classical optimization problems, such as maximum spanning tree and forest, shortest path, maximumweight (perfect) matching, maximum weight independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constra...

متن کامل

Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems

In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Energy

سال: 2021

ISSN: ['0306-2619', '1872-9118']

DOI: https://doi.org/10.1016/j.apenergy.2021.117758